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Problems

Problem 1. First you need to find basis for W . So just solve the system of equations. Row reducing, you
get [

1 2 −1
0 1 −1

]
→
[
1 0 1
0 1 −1

]

So the variable x3 is free, and solutions are of the form u = x3

−1
1
1

, i.e. W = Span(u). The set {u} is

orthogonal by stupid reasons: it only has one vector. So we have an orthogonal basis of W , and we can use
the projection formula. We have

ŷ = projW (y) =
−3 · (−1) + 2 · 1 + 4 · 1

(−1)2 + 12 + 12

−1
1
1

 =

−3
3
3


Then the distance from y to W is the length ||y − ŷ|| = ||[0, 1,−1]T || =

√
2. The projection ŷ is the closest

point to y inside W .

Problem 2. Method 1. Find a basis of W . Solving the system of equations x1 − 3x2 − x3 = 0 you get
that the basis of W is given by the vectors

x1 =

3
1
0

 , x2 =

1
0
1


This basis is not orthogonal, so we can’t use the projection formula right away. We can use
Gramm-Schmidt algorithm to orthogonalize our basis. It is more convenient to start the algorithm with
the second vector rather than the first, since the former has smaller length.

So we have v1 =

1
0
1

, and then

v2 =

3
1
0

− 3 · 1 + 1 · 0 + 0 · 1
12 + 02 + 12

1
0
1

 =

 3/2
1
−3/2


It is easy to see that the result is indeed orthogonal. Now we can use the projection formula to get

projW (y1) =
2 · 1 + (−1) · 0 + (−3) · 1

12 + 02 + 12

1
0
1

+
2 · (3/2) + (−1) · 1 + (−3) · (−3/2)

(3/2)2 + 12 + (−3/2)2

 3/2
1
−3/2

 =

 14/11
13/11
−25/11

 .

Method 2. Any vector y can be written uniquely as y = ŷ + r, where ŷ = projW (y) is the projection, and
r is perpendicular to W . If you know ŷ, you can find r, and vice versa. Here it is actually faster to find r.
This vector r would be just the projection of y onto WT , and WT is easy to describe: it is spanned by the
vector [1,−3,−1]T (notice that this is exactly the vector y2 I asked you to project). Indeed, W was defined
as all the vectors [x1, x2, x3]T satisfying the equation x1 − 3x2 − x3 = 0. But this equation is exactly the
condition of [x1, x2, x3]T being perpendicular to [1,−3,−1]T :x1

x2

x3

 ·
 1
−3
−1

 = x1 − 3x2 − x3 = 0
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Thus the projection r of y onto W⊥ is given by

r =
2 · 1 + (−1) · (−3) + (−3) · (−1)

12 + (−3)2 + (−1)2

 1
−3
−1

 =

 8/11
−24/11
−8/11


Then the projection ŷ1 = projW (y1) will be y1 − r, i.e.

projW (y1) = y1 =

 2
−1
−3

−
 8/11
−24/11
−8/11

 =

 14/11
13/11
−25/11


Notice that this is exactly the same result that we’ve got from the first method.

OK, I agree, this is pretty ugly. I should have checked the calculations before giving assigning you the
problem.

But it would be much nicer for the projections of y2 and y3. First of all, the vector y2 is perpendicular to
W (see the discussion in Method 2). So the projection of y2 onto W is just 0. Speaking of y3, you can
check that y3 satisfies the equation x1 − 3x2 − x3 = 0, and so y3 ∈W , and therefore projW (y3) = y3.

Problem 3. The calculations in this problem are even uglier than in the previous one (in fact, much
uglier). They are so ugly, I couldn’t even finish them. So, I am sorry, no answer for this problem. The
main points are, though, you first need to apply Gramm-Schmidt algorithm. It will give you orthogonal
vectors v1, v2, v3. Then you will have to normalize them, and this would be the end. There is no point in
normalizing the vectors before applying Gramm-Schmidt.

Problem 4. Since I couldn’t compute the previous problem, I can’t compute this one either. Sad...
But the main point is, the resulting orthogonal vectors v1, v2, v3 you and I were supposed to obtain from
Gramm-Schmidt algorithm in the previous exercise will give the columns of the matrix Q = [v1v2v3]. Then
R would be found by R = QTA.

Problem 5. Knowing Q from the previous exercise, we would compute projW (y) = UUT y. Since we don’t
know it, we have to move on.

Problem 6. This one is obvious. Look at the formulas ans see that all the dot products xi · vj in the
formula will be zero. For example, when computing v2, x2 · v1 = 0, and so v2 = x2, and so on.

Problem 7. Let W ⊂ R3 be a plane x1 − x2 + x3 = 0, and let T : R3 → R3 be the transformation
v 7→ T (v) := projW (v).

• Without doing any calculation, explain why T ◦ T = T , i.e. applying T twice is the same as applying
it once.

• Find a basis of W . Call it {v1, v2}.

• Let v3 =

 1
−1
1

. Explain why {v1, v2, v3} is a basis of R3.

• Find the matrix of T relative to this basis.

• Analyze what you’ve got.

First, for any vector x ∈ R3, T (x) is inside W , and so if we try to project it on W again, it will just stay
where it wa, since it is already in W . But that exactly means that T (T (x)) = T (x), for any x. So T 2 = T .

I hope you all know how to find a basis of a subspace W given by equation x1 − x2 + x3 = 0. If you don’t
know that, please, see me during my office hours ASAP. So, we can take

v1 =

1
1
0

 , v2 =

−1
0
1


The set B = {v1, v2, v3} will be linearly independent since v3 is non-zero, and orthogonal to
W = Span(v1, v2). Since we are in R3, any three vectors form a basis, so we are good.
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Since v1, v2 are in W , T doesn’t do anything to them, and so T (v1) = v1 = 1 · v1 + 0 · v2 + 0 · v3 and
similarly T (v2) = v2 = 0 · v1 + 1 · v2 + 0 · v3. Since v3 is perpendicular to W , we get T (v3) = 0. Thus the
matrix is just

[T ]B =

1 0 0
0 1 0
0 0 0


Problem 8. Let A be an m× n matrix. Prove that any vector x in Rn can be written uniquely as a sum
x = p + u, where p ∈ Row(A) and u ∈ Nul(A). (Hint: what is Row(A)⊥?)
Since I think it is a good problem to think about, I will just briefly sketch the solution. Check using the
definition (and using how matrix multiplication works) that Row(A)⊥ is exactly the null space Nul(A).
Than use Theorem 8 in section 6.3.

Now, write x = p + u as in the first part of the problem. What happens if you apply A to p + u?
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